Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Clin Sci (Lond) ; 138(8): 537-554, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38577922

RESUMO

Patients with pulmonary fibrosis (PF) often experience exacerbations of their disease, characterised by a rapid, severe deterioration in lung function that is associated with high mortality. Whilst the pathobiology of such exacerbations is poorly understood, virus infection is a trigger. The present study investigated virus-induced injury responses of alveolar and bronchial epithelial cells (AECs and BECs, respectively) from patients with PF and age-matched controls (Ctrls). Air-liquid interface (ALI) cultures of AECs, comprising type I and II pneumocytes or BECs were inoculated with influenza A virus (H1N1) at 0.1 multiplicity of infection (MOI). Levels of interleukin-6 (IL-6), IL-36γ and IL-1ß were elevated in cultures of AECs from PF patients (PF-AECs, n = 8-11), being markedly higher than Ctrl-AECs (n = 5-6), 48 h post inoculation (pi) (P<0.05); despite no difference in H1N1 RNA copy numbers 24 h pi. Furthermore, the virus-induced inflammatory responses of PF-AECs were greater than BECs (from either PF patients or controls), even though viral loads in the BECs were overall 2- to 3-fold higher than AECs. Baseline levels of the senescence and DNA damage markers, nuclear p21, p16 and H2AXγ were also significantly higher in PF-AECs than Ctrl-AECs and further elevated post-infection. Senescence induction using etoposide augmented virus-induced injuries in AECs (but not viral load), whereas selected senotherapeutics (rapamycin and mitoTEMPO) were protective. The present study provides evidence that senescence increases the susceptibility of AECs from PF patients to severe virus-induced injury and suggests targeting senescence may provide an alternative option to prevent or treat the exacerbations that worsen the underlying disease.


Assuntos
Células Epiteliais Alveolares , Vírus da Influenza A Subtipo H1N1 , Fibrose Pulmonar , Humanos , Vírus da Influenza A Subtipo H1N1/patogenicidade , Células Epiteliais Alveolares/virologia , Células Epiteliais Alveolares/patologia , Células Epiteliais Alveolares/metabolismo , Fibrose Pulmonar/virologia , Fibrose Pulmonar/patologia , Masculino , Influenza Humana/virologia , Influenza Humana/complicações , Influenza Humana/patologia , Pessoa de Meia-Idade , Feminino , Células Cultivadas , Idoso , Senescência Celular , Estudos de Casos e Controles , Citocinas/metabolismo
2.
Int J Mol Sci ; 23(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35887096

RESUMO

Airway mucociliary regeneration and function are key players for airway defense and are impaired in chronic obstructive pulmonary disease (COPD). Using transcriptome analysis in COPD-derived bronchial biopsies, we observed a positive correlation between cilia-related genes and microRNA-449 (miR449). In vitro, miR449 was strongly increased during airway epithelial mucociliary differentiation. In vivo, miR449 was upregulated during recovery from chemical or infective insults. miR0449-/- mice (both alleles are deleted) showed impaired ciliated epithelial regeneration after naphthalene and Haemophilus influenzae exposure, accompanied by more intense inflammation and emphysematous manifestations of COPD. The latter occurred spontaneously in aged miR449-/- mice. We identified Aurora kinase A and its effector target HDAC6 as key mediators in miR449-regulated ciliary homeostasis and epithelial regeneration. Aurora kinase A is downregulated upon miR449 overexpression in vitro and upregulated in miR449-/- mouse lungs. Accordingly, imaging studies showed profoundly altered cilia length and morphology accompanied by reduced mucociliary clearance. Pharmacological inhibition of HDAC6 rescued cilia length and coverage in miR449-/- cells, consistent with its tubulin-deacetylating function. Altogether, our study establishes a link between miR449, ciliary dysfunction, and COPD pathogenesis.


Assuntos
Aurora Quinase A/metabolismo , Desacetilase 6 de Histona/metabolismo , MicroRNAs , Doença Pulmonar Obstrutiva Crônica , Animais , Aurora Quinase A/genética , Cílios/genética , Células Epiteliais , Camundongos , MicroRNAs/genética , Doença Pulmonar Obstrutiva Crônica/genética , Tubulina (Proteína)/genética
3.
ERJ Open Res ; 7(1)2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33816598

RESUMO

Synchrotron-based imaging allows for detection of bronchiectasis-like phenotypes in mice with mucociliary clearance disorders https://bit.ly/3gXGdP3.

4.
Am J Respir Crit Care Med ; 202(8): 1088-1104, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32628504

RESUMO

Rationale: Promoting endogenous pulmonary regeneration is crucial after damage to restore normal lungs and prevent the onset of chronic adult lung diseases.Objectives: To investigate whether the cell-cycle inhibitor p16INK4a limits lung regeneration after newborn bronchopulmonary dysplasia (BPD), a condition characterized by the arrest of alveolar development, leading to adult sequelae.Methods: We exposed p16INK4a-/- and p16INK4aATTAC (apoptosis through targeted activation of caspase 8) transgenic mice to postnatal hyperoxia, followed by pneumonectomy of the p16INK4a-/- mice. We measured p16INK4a in blood mononuclear cells of preterm newborns, 7- to 15-year-old survivors of BPD, and the lungs of patients with BPD.Measurements and Main Results: p16INK4a concentrations increased in lung fibroblasts after hyperoxia-induced BPD in mice and persisted into adulthood. p16INK4a deficiency did not protect against hyperoxic lesions in newborn pups but promoted restoration of the lung architecture by adulthood. Curative clearance of p16INK4a-positive cells once hyperoxic lung lesions were established restored normal lungs by adulthood. p16INK4a deficiency increased neutral lipid synthesis and promoted lipofibroblast and alveolar type 2 (AT2) cell development within the stem-cell niche. Besides, lipofibroblasts support self-renewal of AT2 cells into alveolospheres. Induction with a PPARγ (peroxisome proliferator-activated receptor γ) agonist after hyperoxia also increased lipofibroblast and AT2 cell numbers and restored alveolar architecture in hyperoxia-exposed mice. After pneumonectomy, p16INK4a deficiency again led to an increase in lipofibroblast and AT2 cell numbers in the contralateral lung. Finally, we observed p16INK4a mRNA overexpression in the blood and lungs of preterm newborns, which persisted in the blood of older survivors of BPD.Conclusions: These data demonstrate the potential of targeting p16INK4a and promoting lipofibroblast development to stimulate alveolar regeneration from childhood to adulthood.


Assuntos
Displasia Broncopulmonar/patologia , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Fibroblastos/metabolismo , Pulmão/fisiologia , Regeneração/fisiologia , Adolescente , Adulto , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Animais , Animais Recém-Nascidos , Apoptose , Displasia Broncopulmonar/metabolismo , Células Cultivadas , Criança , Modelos Animais de Doenças , Fibroblastos/patologia , Humanos , Hiperóxia/complicações , Hiperóxia/metabolismo , Hiperóxia/patologia , Recém-Nascido , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Alvéolos Pulmonares/patologia , Distribuição Aleatória , Estudos de Amostragem , Adulto Jovem
5.
J Neurosci ; 39(30): 5842-5860, 2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31123102

RESUMO

Neural circuit development involves the coordinated growth and guidance of axons. During this process, axons encounter many different cues, but how these cues are integrated and translated into growth is poorly understood. In this study, we report that receptor signaling does not follow a linear path but changes dependent on developmental stage and coreceptors involved. Using developing chicken embryos of both sexes, our data show that calcium-sensing receptor (CaSR), a G-protein-coupled receptor important for regulating calcium homeostasis, regulates neurite growth in two distinct ways. First, when signaling in isolation, CaSR promotes growth through the PI3-kinase-Akt pathway. At later developmental stages, CaSR enhances tropomyosin receptor kinase B (TrkB)/BDNF-mediated neurite growth. This enhancement is facilitated through a switch in the signaling cascade downstream of CaSR (i.e., from the PI3-kinase-Akt pathway to activation of GSK3α Tyr279). TrkB and CaSR colocalize within late endosomes, cotraffic and coactivate GSK3, which serves as a shared signaling node for both receptors. Our study provides evidence that two unrelated receptors can integrate their individual signaling cascades toward a nonadditive effect and thus control neurite growth during development.SIGNIFICANCE STATEMENT This work highlights the effect of receptor coactivation and signal integration in a developmental setting. During embryonic development, neurites grow toward their targets guided by cues in the extracellular environment. These cues are sensed by receptors at the surface that trigger intracellular signaling events modulating the cytoskeleton. Emerging evidence suggests that the effects of guidance cues are diversified, therefore expanding the number of responses. Here, we show that two unrelated receptors can change the downstream signaling cascade and regulate neuronal growth through a shared signaling node. In addition to unraveling a novel signaling pathway in neurite growth, this research stresses the importance of receptor coactivation and signal integration during development of the nervous system.


Assuntos
Axônios/metabolismo , Glicoproteínas de Membrana/metabolismo , Gânglio Nodoso/metabolismo , Proteínas Tirosina Quinases/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Transdução de Sinais/fisiologia , Animais , Crescimento Celular , Células Cultivadas , Embrião de Galinha , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gânglio Nodoso/citologia
6.
Cell Death Differ ; 26(12): 2740-2757, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31068677

RESUMO

Motile cilia serve vital functions in development, homeostasis, and regeneration. We recently demonstrated that TAp73 is an essential transcriptional regulator of respiratory multiciliogenesis. Here, we show that TAp73 is expressed in multiciliated cells (MCCs) of diverse tissues. Analysis of TAp73 mutant animals revealed that TAp73 regulates Foxj1, Rfx2, Rfx3, axonemal dyneins Dnali1 and Dnai1, plays a pivotal role in the generation of MCCs in male and female reproductive ducts, and contributes to fertility. However, the function of MCCs in the brain appears to be preserved despite the loss of TAp73, and robust activity of cilia-related networks is maintained in the absence of TAp73. Notably, TAp73 loss leads to distinct changes in ciliogenic microRNAs: miR34bc expression is reduced, whereas the miR449 cluster is induced in diverse multiciliated epithelia. Among different MCCs, choroid plexus (CP) epithelial cells in the brain display prominent miR449 expression, whereas brain ventricles exhibit significant increase in miR449 levels along with an increase in the activity of ciliogenic E2F4/MCIDAS circuit in TAp73 mutant animals. Conversely, E2F4 induces robust transcriptional response from miR449 genomic regions. To address whether increased miR449 levels in the brain maintain the multiciliogenesis program in the absence of TAp73, we deleted both TAp73 and miR449 in mice. Although loss of miR449 alone led to a mild ciliary defect in the CP, more pronounced ciliary defects and hydrocephalus were observed in the brain lacking both TAp73 and miR449. In contrast, miR449 loss in other MCCs failed to enhance ciliary defects associated with TAp73 loss. Together, our study shows that, in addition to the airways, TAp73 is essential for generation of MCCs in male and female reproductive ducts, whereas miR449 and TAp73 complement each other to support multiciliogenesis and CP development in the brain.


Assuntos
Cílios/fisiologia , MicroRNAs/metabolismo , Proteína Tumoral p73/metabolismo , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Cílios/metabolismo , Humanos , Camundongos , MicroRNAs/genética , Proteínas Nucleares/genética , Proteína Tumoral p73/genética
7.
Cell Death Dis ; 9(12): 1183, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30518789

RESUMO

Planar cell polarity (PCP) and intercellular junctional complexes establish tissue structure and coordinated behaviors across epithelial sheets. In multiciliated ependymal cells, rotational and translational PCP coordinate cilia beating and direct cerebrospinal fluid circulation. Thus, PCP disruption results in ciliopathies and hydrocephalus. PCP establishment depends on the polarization of cytoskeleton and requires the asymmetric localization of core and global regulatory modules, including membrane proteins like Vangl1/2 or Frizzled. We analyzed the subcellular localization of select proteins that make up these modules in ependymal cells and the effect of Trp73 loss on their localization. We identify a novel function of the Trp73 tumor suppressor gene, the TAp73 isoform in particular, as an essential regulator of PCP through the modulation of actin and microtubule cytoskeleton dynamics, demonstrating that Trp73 is a key player in the organization of ependymal ciliated epithelia. Mechanistically, we show that p73 regulates translational PCP and actin dynamics through TAp73-dependent modulation of non-musclemyosin-II activity. In addition, TAp73 is required for the asymmetric localization of PCP-core and global signaling modules and regulates polarized microtubule dynamics, which in turn set up the rotational PCP. Therefore, TAp73 modulates, directly and/or indirectly, transcriptional programs regulating actin and microtubules dynamics and Golgi organization signaling pathways. These results shed light into the mechanism of ependymal cell planar polarization and reveal p73 as an epithelial architect during development regulating the cellular cytoskeleton.


Assuntos
Polaridade Celular/genética , Citoesqueleto/metabolismo , Epêndima/metabolismo , Microtúbulos/metabolismo , Células-Tronco Pluripotentes/metabolismo , Proteína Tumoral p73/genética , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cílios/metabolismo , Cílios/ultraestrutura , Citoesqueleto/ultraestrutura , Epêndima/citologia , Feminino , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Regulação da Expressão Gênica , Ontologia Genética , Células HCT116 , Humanos , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microtúbulos/ultraestrutura , Anotação de Sequência Molecular , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Miosina não Muscular Tipo IIA/genética , Miosina não Muscular Tipo IIA/metabolismo , Células-Tronco Pluripotentes/ultraestrutura , Transdução de Sinais , Proteína Tumoral p73/deficiência
8.
Genes Dev ; 30(11): 1300-12, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27257214

RESUMO

Motile multiciliated cells (MCCs) have critical roles in respiratory health and disease and are essential for cleaning inhaled pollutants and pathogens from airways. Despite their significance for human disease, the transcriptional control that governs multiciliogenesis remains poorly understood. Here we identify TP73, a p53 homolog, as governing the program for airway multiciliogenesis. Mice with TP73 deficiency suffer from chronic respiratory tract infections due to profound defects in ciliogenesis and complete loss of mucociliary clearance. Organotypic airway cultures pinpoint TAp73 as necessary and sufficient for basal body docking, axonemal extension, and motility during the differentiation of MCC progenitors. Mechanistically, cross-species genomic analyses and complete ciliary rescue of knockout MCCs identify TAp73 as the conserved central transcriptional integrator of multiciliogenesis. TAp73 directly activates the key regulators FoxJ1, Rfx2, Rfx3, and miR34bc plus nearly 50 structural and functional ciliary genes, some of which are associated with human ciliopathies. Our results position TAp73 as a novel central regulator of MCC differentiation.


Assuntos
Diferenciação Celular/genética , Cílios/genética , Regulação da Expressão Gênica/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Mucosa Respiratória/citologia , Animais , Células Cultivadas , Técnicas de Inativação de Genes , Camundongos , Infecções Respiratórias/genética , Infecções Respiratórias/fisiopatologia
9.
Nature ; 510(7503): 115-20, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24899310

RESUMO

The mir-34/449 family consists of six homologous miRNAs at three genomic loci. Redundancy of miR-34/449 miRNAs and their dominant expression in multiciliated epithelia suggest a functional significance in ciliogenesis. Here we report that mice deficient for all miR-34/449 miRNAs exhibited postnatal mortality, infertility and strong respiratory dysfunction caused by defective mucociliary clearance. In both mouse and Xenopus, miR-34/449-deficient multiciliated cells (MCCs) exhibited a significant decrease in cilia length and number, due to defective basal body maturation and apical docking. The effect of miR-34/449 on ciliogenesis was mediated, at least in part, by post-transcriptional repression of Cp110, a centriolar protein suppressing cilia assembly. Consistent with this, cp110 knockdown in miR-34/449-deficient MCCs restored ciliogenesis by rescuing basal body maturation and docking. Altogether, our findings elucidate conserved cellular and molecular mechanisms through which miR-34/449 regulate motile ciliogenesis.


Assuntos
Proteínas de Ligação a Calmodulina/deficiência , Proteínas de Ligação a Calmodulina/genética , Cílios/genética , Cílios/fisiologia , MicroRNAs/genética , Morfogênese/genética , Animais , Animais Recém-Nascidos , Corpos Basais/metabolismo , Corpos Basais/patologia , Corpos Basais/ultraestrutura , Sequência de Bases , Proteínas de Ligação a Calmodulina/metabolismo , Centríolos/metabolismo , Cílios/patologia , Cílios/ultraestrutura , Epiderme/embriologia , Epiderme/patologia , Feminino , Infertilidade/genética , Infertilidade/fisiopatologia , Síndrome de Kartagener/genética , Síndrome de Kartagener/patologia , Síndrome de Kartagener/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/metabolismo , Fenótipo , Sistema Respiratório/patologia , Sistema Respiratório/fisiopatologia , Análise de Sobrevida , Xenopus laevis/embriologia
10.
Cell Cycle ; 10(17): 2874-82, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21857159

RESUMO

The microRNAs 449a, b, and c (miR-449) are potent inducers of cell death, cell cycle arrest, and/or cell differentiation. They belong to the same family as the p53-responsive microRNAs miR-34. Instead of p53, however, the cell cycle regulatory transcription factor E2F1 induces miR-449. All members of this microRNA family are capable of mediating cell cycle arrest and apoptosis and might thereby contribute to tumor suppression. Underlying mechanisms include the downregulation of histone acetyl transferases and consecutive activation of p53, but also the targeting of cyclin dependent kinases and their association partners. Thus, miR-34 and miR-449 provide an asymmetric feedback loop to balance E2F and p53 activities. More recently, it was discovered that miR-449 displays strong tissue specificity, with high levels in lung and testes. Two model systems (Xenopus embryos and cultured human cells) revealed that miR-449 is essential for the development of ciliated epithelia, and this appears to depend on miR-449-mediated modulation of the Notch signaling pathway. Here we summarize our current knowledge on cell fate determination by miR-449, and we propose future directions to explore the function of miR-449 in cell regulation and organismal development. MiR-449 helps to ensure proper cell function but also to avoid cancer, marking a close link between cell differentiation and tumor suppression.


Assuntos
Apoptose , Pontos de Checagem do Ciclo Celular , Diferenciação Celular , Cílios/fisiologia , MicroRNAs/metabolismo , Animais , Plexo Corióideo/metabolismo , Cílios/metabolismo , Dano ao DNA , Fator de Transcrição E2F1/metabolismo , Células Epidérmicas , Epiderme/metabolismo , Epitélio/metabolismo , Epitélio/fisiologia , Humanos , MicroRNAs/genética , Receptores Notch/metabolismo , Transdução de Sinais , Sirtuína 1/metabolismo , Ativação Transcricional , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Xenopus/embriologia , Xenopus/metabolismo , Xenopus/fisiologia , Proteínas de Xenopus/metabolismo
11.
Cell Cycle ; 9(22): 4579-83, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21088493

RESUMO

MicroRNAs of the miR-34/449 family mediate cell cycle arrest and tumor suppression.  Here we show that the expression of microRNA miR-449a, unlike its paralogue miR-34a, is highly tissue specific and largely restricted to pulmonary and testicular tissue. MiR-449a levels in the murine lung are particularly high shortly before and after birth, coinciding with terminal differentiation of lung epithelia. Strikingly, miR-449a is upregulated by more than 1000-fold when epithelial cells from human airways are lifted from a liquid environment to air, allowing them to undergo mucociliary differentiation. The induction of miR-449a occurs in parallel to its host gene CDC20B and the transcription factor FoxJ1. Exposure to tobacco smoke induces a moderate further increase in the levels of miR-449a, and also miR-34a, in differentiated airway epithelia. We propose that miR-449a can serve as an exquisitely sensitive and specific biomarker for the differentiation of bronchial epithelia. Moreover, miR-449a may actively promote mucociliary differentiation through its ability to block cell cycle progression, and it may conribute to a first line of defence against genotoxic stress by its proapoptotic functions.


Assuntos
Células Epiteliais/metabolismo , MicroRNAs/metabolismo , Mucosa Respiratória/metabolismo , Animais , Proteínas Cdc20 , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Células Epiteliais/citologia , Fatores de Transcrição Forkhead/metabolismo , Humanos , Pulmão/metabolismo , Camundongos , Mucosa Respiratória/citologia , Fumar
12.
Nucleic Acids Res ; 36(Database issue): D689-94, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18045786

RESUMO

EndoNet is an information resource about intercellular regulatory communication. It provides information about hormones, hormone receptors, the sources (i.e. cells, tissues and organs) where the hormones are synthesized and secreted, and where the respective receptors are expressed. The database focuses on the regulatory relations between them. An elementary communication is displayed as a causal link from a cell that secretes a particular hormone to those cells which express the corresponding hormone receptor and respond to the hormone. Whenever expression, synthesis and/or secretion of another hormone are part of this response, it renders the corresponding cell an internal node of the resulting network. This intercellular communication network coordinates the function of different organs. Therefore, the database covers the hierarchy of cellular organization of tissues and organs as it has been modeled in the Cytomer ontology, which has now been directly embedded into EndoNet. The user can query the database; the results can be used to visualize the intercellular information flow. A newly implemented hormone classification enables to browse the database and may be used as alternative entry point. EndoNet is accessible at: http://endonet.bioinf.med.uni-goettingen.de/.


Assuntos
Comunicação Celular , Bases de Dados Factuais , Hormônios/metabolismo , Gráficos por Computador , Hormônios/classificação , Internet , Receptores de Superfície Celular/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA